The best design guidelines for Bluetooth Circuit Boards!

By | Date posted: | Last updated: December 13, 2022
Bluetooth Circuit Boards

The use of devices that utilize Bluetooth is becoming quite ubiquitous. From headsets and audio products to home automation systems, wireless consumer electronics applications, the list is ever growing. When it comes to designing PCBs with Bluetooth technology there are a number of issues that you can contend with, including but not limited to:

  • Signal Integrity
  • Interference
  • Lost data, and more.

It is, therefore, imperative that certain design guidelines be followed to optimize signal integrity and ensure overall device effectiveness. Before we look at some design guidelines in detail, let us first look at the components of a Bluetooth Circuit Board.

Components of a Bluetooth Circuit Board

The vital components of a Bluetooth Circuit Board include:

  • An antenna that helps in sending & receiving information.
  • There are also inductors that adjust the impedance of the antenna.
  • Module containing up to 4 IO pins.
  • Diodes, resistors & capacitors.
  • Chips and regulators.

On account of a number of sensitive components it is important that they be handled extremely carefully.

Let us look at some design guidelines that need to be followed when it comes to Bluetooth Circuit Boards.

Bluetooth Circuit Boards design guidelines:

Certified Modules

While incorporating Bluetooth, it is prudent to use a pre-certified module. With its use, development can be accelerated & time-to-market significantly enhanced. The availability of certified modules that include an ARM processor offers flexibility and power.

Bluetooth Device Selection

It is important to choose an appropriate Bluetooth device & to ensure that the antenna is sized. For simple beacon applications, Bluetooth Low Energy can be used, however for higher throughput, you need something with more Tx power and faster data rate. However, you could also use an all-in-one chip with powerful processors.

Power consumption

It is important to calculate the power consumption and to ensure that there is no current leakage in the design. The use of a microcontroller can ensure longevity of your device.

Separate Copper Signals

Keep the antenna area free from any copper signals nearby as also from high-energy components. It is also important to keep the area free from planes & polygon pours. If the antenna area is being manually laid out, it is important to use a ground plane.

Also, it is important to use ground stitching vias. By doing this you will ensure that unwanted radiation from the PCB edge does not penetrate the Bluetooth signals.

Another best practice to follow includes optimizing the board shape as per the Bluetooth device. It is also important to separate the analog & digital ground planes.

Power Supply Notes

It is important to ensure that the rail that supplies power to the Bluetooth module is kept clean. Also the use of bypass and decoupling capacitors is recommended. In order to reject high frequency noise the use of ferrite beads on the power rail is recommended.

Tools and Analysis

In designing the antenna area, it is important to analyze as well as tune the matching network. For this you need to have proper network analyzers.

Take care of Real-World Obstructions

There can be a number of real world obstructions to a Bluetooth connection. These could be by way of smart phones, computers, microwave ovens, office lightning and more. All of this can cause signal loss. In order to make sure than signal quality is not impacted a higher power device is recommended.

EMI Shielding Strategies

The use of EMI shielding strategies such as increasing the distance between traces or by adding an EMI shield can ensure that high frequency coupling does not reach the components.

Physical size constraints

A wide variety of Bluetooth PCB devices are portable and therefore needs to fit into an enclosure. The design therefore needs to take into account these constraints. What is also important is that you look at the board real estate management since your device would be performing other functions. This could necessitate the use of WiFi cards, analog microchips and more. All of these components will compete for space and hence the choice of proper sizes is important.

To Sum Up

By following the above guidelines at the design stage you can make sure that you avoid issues at a later date. Partnering with an experienced PCB manufacturing partner can go a long way in ensuring success of your Bluetooth Circuit Boards. Without due emphasis being laid to the design aspect the overall device performance can be severely affected.

At Technotronix, we are fully equipped to handle your PCB manufacturing requirements. We follow industry best practices to ensure we deliver cutting-edge products. If you have any questions or any requirements related to printed circuit boards, please feel free to contact us via email at [email protected] or call 714/630-9200.

What are the telecom PCB design considerations?

By | Date posted: | Last updated: November 21, 2022
Telecom PCB

When it comes to designing PCBs for the telecom industry, there are a number of things to consider. Right from the PCB materials to the kind of testing required, there are factors unique to the industry; not to mention the fact that there are generally tough deadlines & budgets to work with.

Here are some of the PCB design considerations to take into account when designing for the telecom industry.

Telecom PCB Design Considerations

The specs

To begin with, it is extremely important to understand what is the size of the product, how the final product works, who are its target users, what are the features desired, and more. Additionally, it is important to think through how the device is being powered. Once you have thought through all these aspects you can rest assured that there will not be costly errors at a later date.

Software or Hardware? 

It is important to determine whether you can add hardware components or software code to complete some functions. Each of them comes with its own set of advantages & disadvantages:

Hardware Advantages:

  • Fewer security risks.
  • Needs analog signals.
  • Debugging is easy.
  • Less chances of failure.

Software Advantages:

  • Easy to update.
  • No requirements of costly materials.
  • Troubleshooting is easy.

The Microcontroller

Simply put, the microcontroller can be likened to the brain of the product. Therefore, it is crucial to choose the microcontroller wisely. Some of the factors to consider include:

  • What are the programming options – In making the choice of the microcontroller, you can go with one that has internal memory or one that can interact with external devices. Similarly, you can go with one that has a one-time programmable option or reprogrammable.
  • Whether or not the controller needs built in peripherals.
  • What are the internal RAM requirements and can an external RAM be used for expansion.
  • What are the technical considerations to get the microcontroller running.

Once you have an idea of the components required, the next step is to work on the schematics. You need to have the details such as the names, ratings, pins component values, and more.

It is imperative that you ensure that the bare board has enough space so that all the components can fit in.

Do not miss the fact that there has to be enough soldering mask between every pin. If this step isn’t done correctly, defects will soon surface.

PCB Component Placing and Routing 

You need to make sure that component placement is done correctly so that the PCB can function effectively. Component placement also has a strong impact on thermal management as well as electrical noise, so it needs to be done with care. As a thumb rule, Components should be arranged in the following order:

  • Connectors.
  • Power circuits.
  • Precision and sensitive circuits.
  • Critical circuitry components.

Some of the other guidelines to follow, include:

  • Place similar components facing the same direction. This will help reduce errors in soldering.
  • When plated through-hole components are placed on the solder side, it is important to see that components aren’t placed directly opposite.

Quality Checks 

This is a very important step once the PCB is completed. There are a number of tools such as a Design Rule Checker that can come in handy to spot any errors in design. Additionally, an Electrical Rule Checker is important to see that all specifications have been adhered to.

To sum up

It is imperative to follow six crucial steps when it comes to PCB designing:

  • Conceptualization of the board.
  • Draw the circuit schematic. When creating the schematic, it is also important to create a detailed bill of materials (BOM) that contains information on all the components.
  • Define the mechanical constraints of the board.
  • Ensure proper component placement.
  • Ensure good routing that improves signal and power integrity.
  • Run quality and manufacturing checks to ensure all requirements have been met. In case the design does not pass all the checks, you need to revisit the previous steps and make necessary changes.

At Technotronix, we have over 4 decades of industry experience. Importantly, we have dealt with a wide range of telecom providers. We are therefore well-poised to understand the various issues than plague the industry and how robust testing can help overcome these issues. To know more, please explore our PCB manufacturing services for Telecommunication Industry!

Primary pcb heat dissipation techniques to protect your circuit board!

By | Date posted: | Last updated: October 27, 2022
PCB Heat Dissipation Techniques

One of the main considerations when it comes to ensuring the efficacy of a PCB is to make sure that the heat generated is dissipated well. Needless to mention that high temperatures can lead not just to issues in performance but also to the complete breakdown of the PCB. Before we look at some of the effective ways of heat dissipation in a PCB, it will be worthwhile to look at why heat is a problem, in the first place:

Issues caused by heat in PCBs

Although PCBs are designed to handle some amount of heat, excess heat in PCBs results in the following issues:

  • It can lead to disruption of circuit lines.
  • There is a chance of oxidation of components.
  • There could be loss of structural integrity.
  • It could lead to incompatible material expansion rates.

All of these issues impact PCB performance. It is imperative therefore to equip the PCB with effective heat dissipation techniques. Let us have a look at some of them below:

PCB Heat dissipation techniques

1. Cooling Fans and Heat Sinks
It stands to reason that cooling fans add a stream of cool air & bring down the temperature of the PCB. Typically, cooling fans are used when it comes to high current power supplies. In addition, heat sinks are also commonly used to dissipate heat. Simply put, these are thermally conductive metallic parts that are attached to heat-producing components. The heat sink ensures that heat is transferred & dissipated over large areas.

2. Thick Copper Traces
Thick copper traces work particularly well for high-power applications that offer a large surface for heat distribution as well as dissipation.

3. Heat Pipes
Heat pipes come in handy as they absorb heat with fluids such as acetone, ammonia, water or nitrogen. Once the fluid absorbs the heat, the vapor is released by the pipe. In turn, the vapor reaches a condenser where it condenses to a liquid. This method of heat dissipation is both reliable as well as cost-effective. Also the method is hugely popular as it is largely maintenance-free.

4. Right Board Materials
Choosing board materials that have heat-dissipating properties is extremely crucial. For example, choosing a polyimide base is important. Similarly, flex PCBs are known for their large surface area–to-volume ratios.

Aluminum PCBs are yet another great choice for their heat dissipation abilities. They are particularly suited to be used I case of high-power applications. Alternately, for high temperature projects, copper PCBs are a great choice.

Among nonmetals, ceramic PCBs also work well on account of high thermal conductivity and low coefficient of thermal expansion.

5. Thermal Via Arrays
The use of thermal via arrays help in increasing copper’s area as well as mass and thereby reducing thermal resistance. They also allow for better conduction of heat. In fact, the use of thermal via arrays along with pads, takes away the need of deploying heat sinks.

6. Copper Coin Technology
Embedding small pieces of copper in the PCB, particularly directly under the component that generates heat, has been found to be extremely effective. The high heat conductivity of copper makes sure that it conducts the heat from the component and sends it to the heat sink. The coins can take the following shapes:

  • T-coins
  • I-coins
  • C-coins

7.  PCB Layout
It is important to follow some best practices for heat dissipation when it comes to the PCB layout. Some of these best practices that assist in heat dissipation, include:

  • Placing temperature-sensitive parts at the bottom as opposed to the top of heating devices.
  • Stagger parts for improved ventilation.
  • Placing a thermometer in the hottest area to be able to evaluate the heat generated.
  • Installing heat sources far away from each other.
  • Placing heat-generating components downstream of the cooling fan. In fact, it is imperative to study the air circulation of the PCB & then place high heat generating devices accordingly.

With the above techniques, you will be able to make sure that heat is effectively dissipated & that it does not come in the way of the effective functioning of the PCB & hence of the device.

Technotronix provides a one-stop solution for PCB manufacturing services with specialized support, reliable testing, and multi-functional features. In case you have any questions, please feel free to contact us via email at [email protected] or call us at 714/630-9200.

LED PCB design guide – What are the design considerations?

By | Date posted: | Last updated: October 20, 2022
LED PCB design

The use of LED PCBs must quite an extent become ubiquitous with many applications making use of them. In fact, the use of LEDs in standard printed circuit boards is quite a technological revolution. They offer several advantages including but not limited to:

  • Low Cost.
  • High on efficiency in terms of power consumption.
  • Compact structure including their light weight and small size.
  • Resistance to dust & moisture.
  • Improved lifespan, and more.

To avail of the many advantages offered by LED printed circuit boards, however, it is imperative that some key design aspects be kept in mind. Here is a quick look at some of them.

Key considerations in LED PCB design

Component placement

One thing that is crucial when it comes to LED PCB design, it is proper component placement. With the right component placement you can not only ensure easy manufacturability but also ensure quality.

It is important to maintain a certain distance when it comes to placement of components on the board else it can lead to overvoltage. It is therefore important to consider two aspects:

  • Creepage or the shortest distance between components.
  • Clearance or the distance between components measured through the air.

It is also important to ensure that the components are not placed near the PCB outline. Placing components towards the edge can lead to dislodging of components.

Also, it must be kept in mind that all Surface Mounted components follow the SMD PCB design rules. Through-hole components similarly must be placed on top of the board so that the number of steps required for assembly, are optimized.

As for blind and buried PCB vias they should not be placed too close to SMT pads as doing that can mean that the solder can migrate away from the pad. In such situations, there is the possibility of a faulty joint. As a thumb rule, therefore, a distance of 0.025 inches or more should be maintained between the vias and the SMT pad.

PCB materials

While considering the PCB design, it is also important to take into account the material used. The two popular choices include FR4 and IMS or what is known as Insulated Metal Substrate. In choosing the PCB material you need to be mindful of the fact that it not only ensures that excess heat is removed from the board but it also provides electric insulation.

When it comes to the metal base layer, aluminum is a popular choice as it ensures thermal management.

Thermal management

High temperature can impact the longevity of LED lights. To ensure thermal management, therefore, the following are used to dissipate heat:

  • Aluminum Cores
  • Thermal Vias
  • Heat Sinks

For thermal management it is also important that the right component placement be undertaken.

Tracking

Careful tracking is a prerequisite in order to ensure there are no short circuits or crosstalk. If there is proper trace routing, you can rest assured that there is no interference from other networks. The right track width also goes a long way in preventing overheating. It is also important to pay due attention to:

  • Tracking Space
  • Mounting Holes

Finishes

The finish of the board helps in protecting the copper as also offering a soldering surface. Some of the common finishes include:

  • HASL
  • OSP
  • Electrolytic Nickel
  • Electrolytic Gold
  • Immersion Tin
  • Immersion Silver, and more.

The pros and cons of each finish need to be carefully ascertained.

To Sum Up

When it comes to LED PCB, we need to ensure that the following challenges are suitably mitigated:

Heat – The design should ensure that there is optimal thermal management so that longevity is maintained. This is because the temperature of the LED circuit has an inverse correlation with the longevity of the LED.

Color of the light – Once the temperature of the LED circuit increases the colors of the LED can change. Therefore proper heat dispersal is key.

Efficient PCB design, therefore, is a key aspect of manufacturing the right LED solution. It is imperative that you choose the right partner who has the requisite industry knowledge and can also ensure that the PCB designs are customized to the bespoke needs of your applications.

At Technotronix, we are fully equipped to handle your LED PCB manufacturing requirements. With over four decades of experience in delivering high-quality, on-time, competitive price products, you can bank on us for your PCB requirements. In case you have any questions regarding LED circuit boards, please feel free to contact us via email at [email protected] or call us at 714/630-9200.